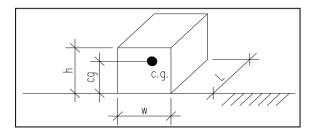
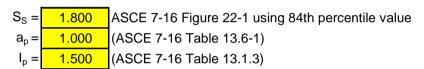
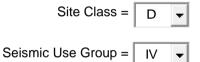

Project: XXX page: 1 of 2


Date: 6/23/2020 Engineer: XXX

RBI TORUS 1250 INDOOR DUAL FUEL VERTICAL - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)


Slab on Grade Applications Only

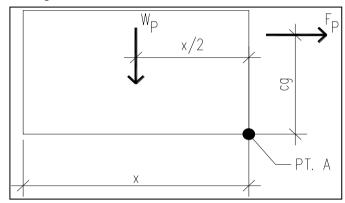

Equipment Parameters:

Seismic Parameters:

Seismic Force:

Project: XXX page: 2 of 2

Date: 6/23/2020 Engineer: XXX


RBI TORUS 1250 INDOOR DUAL FUEL VERTICAL - SEISMIC ANCHORAGE (ASCE 7-16/IBC 2000)

Design Anchorage Force:

Horizontal Shear Force Per Anchor:

$$R_H = F_p/4 =$$
 138.9 LBS.

Overturning Resistance About Point A:

x = 61.84375 in. x = lesser of L or h

$$M_{OT} = F_p^* cg =$$
 15278.7 LBS.-FT.

$$M_{RES} = W_p^* x/2 = 30814.6$$
 LBS.-FT. OK, No Uplift

Vertical Acceleration: assume $\rho = 1.0$

$$Ev = \rho^* Fp + 0.2^* S_{DS}^* W =$$
 385.8 LBS. (IBC Eqn. 1617.1.1)

$$R_{VNETUP} = (M_{OT}/(2*x))-(W_p/4)+(Ev/4) =$$
 LBS. No Uplfit

Force Summary Per Corner:

Component Anchorage:

$$R_{HNET} =$$
 138.9 LBS. $R_{VNETUP} =$ **0.0** LBS.

Anchors Embedded in Concrete or CMU:

$$1.3^*R_p^*R_{HNET} =$$
 270.8 LBS. (IBC 1617.1.7 #2)
 $1.3^*R_p^*R_{VNETUP} =$ **0.0** LBS. (IBC 1617.1.7 #2)